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Energy Band Gap in a Periodic Potential

Recall the electrostatic potential energy in a crystalline solid along a line
passing through a line of atoms:
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Along a line parallel to this but running between atoms, the divergences
of the periodic potential energy are softened.

A simple 1D model that captures the periodicity of such a potential is:
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Electron Wavefunctions in a Periodic Potential

Consider the following cases:

U, =0

U, #0
k<<Z

n’k’

Wavefunctions are plane waves o)
and energy bands are parabolic: ¥ = Ae E = Ey.

Electrons wavelengths much larger than a, so wavefunctions and
energy bands are nearly the same as above

Electrons wavelengths approach a, so waves begin to be strongly
back-scattered :

v, = A pikon 4 p =itke-on) B< A

Electrons waves are strongly back-scattered (Bragg scattering) so
standing waves are formed:

v, = C[ piU—an) 4 e—i(kx—a)t)] A[ o 4 e—ikx]e—iwt
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Bloch Theorem and Wavefunctions

Bloch theorem is one of the most important formal results in all of solid
state physics because it tells us the mathematical form of an electron
wavefunction in the presence of a periodic potential energy.

In independent-electron approximation, the time-independent
Schrodinger equation (SE) for an electron in a periodic potential is:

{—2V2 +U(77)}//:Ew
2m

where the potential energy is invariant under a lattice translation vector
T Ulr+T)=U(r) and T=ua+vb+wc

Bloch showed that the solutions to the SE are the product of a plane
wave and a function with the periodicity of the lattice:

Y, lr) =ulrie*r and  u(r+T) = ur)




Bloch Wavefunctions

v (F)=u (F)e"

This result gives evidence to support the nearly-free electron approximation,
in which the periodic potential is assumed to have a very small effect on the
plane-wave character of a free electron wavefunction. It also explains why
the free-electron gas model is so successful for the simple metals!




Tight Binding Method

The tight binding approximation is also called the linear combination of
atomic orbital (LCAO) approximation in which the one electron wavefunction

W, (r) is built from the electron wavefunction of an isolated atom, ¢(r).
I (r) = E ij€0<1’ - 1}-) ,
J
where the sum is over all lattice points.

This function is of the Bloch form if C,, = N~ ¢/*j for a crystal of N atoms:

Ya(r) =N"" E exp(ik - r))o(r — 1)) .

J
We find the first-order energy by calculating the diagonal matrix elements
of the hamiltonian of the crystal:

(KH[k) =N, Y explik - (r; — r,)] (@,|Hl@)

j m

where ¢,, = ¢(r — r,,). Writing p, =1, — 1},

(k|H|k) = 3 exp(—ik - p,) J dV ¢*(r — p,)Helr) |

m



We consider the integrals over the same atom and the nearest
neighbor atoms only, then

J dV ¢*(r)He(r) = —a ;[ dV ¢*(r = p)He(r) = =7 ;
and we have the first-order energy, provided <k| k> = 1:

(klHk) = —a —y > exp(—ik *p,) = €, .

m

For a simple cubic structure the nearest-neighbor atoms are at

pﬂl — <i a9070> 7 <O> i Cl,O) 7 <O>O> i Cl) >

we have ¢ = —a — 2y(cos ka + cos k,a + cos k.a) .

Thus the energies are confined to a band of width 12y. The weaker
the overlap, the narrower is the energy band.

If ka <1, ¢, = —a — 6y + yk’a®, the effective mass m*= h2/2ya?

When the overlap integral y is small, the band is narrow and the
effective mass is high.



For the bcc structure with eight nearest neighbors,

1 1 1
e, = —a — 8ycos ;kacosskyacossk.a .

For the fcc structure with twelve nearest neighbors,

€. = —a — 4y(cos ;kya cos 3 k.a + cos 3 k.a cos 5 k.a + cos sk.a cos 3 k,a)
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The tight-binding (or LCAO) approximation is quite good for inner
electrons of atoms, but it is not often good description for the conduction
electrons. It is used to describe approximately the d bands of transition
metals and the valence bands of diamondlike and inert gas crystals.



Band Gap

The band gap is the difference in energy between

the lowest point of the conduction band and the
highest point of the valence band. The lowest

Vacant conduction band

Forbidden band

Energy

point in the conduction band is called the

conduction band edge; the highest point in the Filled valence band

valence band is called the valence band edge.

Table 1 Energy gap between the valence and conduction bands

(i = indirect gap; d = direct gap)

Eg, eV Eg, eV
Crystal Gap 0K 300 K Crystal Gap 0K 300 K
Diamond i 5.4 SiC(hex) i 3.0 —
Si i 1.17 1.11 Te d 0.33 —
Ge i 0.744  0.66 HgTe" d —0.30
aSn d 0.00 0.00 PbS d 0.286 0.34-0.37
InSb d 0.23 0.17 PbSe i 0.165 0.27
InAs d 0.43 0.36 PbTe i 0.190 0.29
InP d 1.42 1.27 CdS d 2.582 2.42
GaP i 2.32 2.25 CdSe d 1.840 1.74
GaAs d 1.52 1.43 CdTe d 1.607 1.44
GaSb d 0.81 0.68 SnTe d 0.3 0.18
AlSb i 1.65 1.6 Cu,0 d 2.172 —

“HgTe is a semimetal; the bands overlap.



Equations of Motion

The propagation speed of an electron wavepacket in a periodic crystal can
be calculated from the energy band along that direction in reciprocal space:

¢ dk nodk

The work e done on the electron by the electric field E in the time interval
ot is

electron velocity: (1-D) y =92 _LdE  (3p) y (k)= A1V,e(K)

o€ = —ekv, 0t , and since  Se = (de/dk)5k = hv, ok |

we have 6k = —(eE/h)St and hdk/dt =-eE =F, so we obtain

dk _
dt

F

This is an important relation: in a crystal Adk/dt is equal to the external
force on the electron. In free space d(mv)/dt is equal to the force. We have
not overthrown Newton’s second law of motion: the electron in the crystal
is subject to forces from the crystal lattice as well as from external sources.



In a constant magnetic field B, the equation of motion is

hic

an electron moves in k space in a
direction normal to the direction
of the gradient of the energy ¢, so
that the electron moves on a
surface of constant energy. The
value of the projection kg of k on B
is constant during the motion. The
motion in k space is on a plane
normal to the direction of B, and
the orbit is defined by the
intersection of this plane with a
surface of constant energy.




Physical Derivation of Equations of Motion

We consider the Bloch eigenfunction 1, belonging to the energy eigen-
value €, and wavevector k:

. = % Ck + G) explitk + G) * r]

The expectation value of the momentum of an electron in the Bloch state
kis
P, = (k|-iaV|k) = D ik + G)|[C(k + G)? =4k + D G|Ck + G)P) ,
G G
using X|C(k + G)] = 1.

We suppose that a weak external force is applied to the crystal in a time
interval such that the total impulse isJ = [F dt. We will have

J = APtot — APlat + APel



The change of momentum of the electron will be
Apy = AlAk + > AG[(V|C(k + G)P) - AK]
G

The change Ap,.; in the lattice momentum resulting from the change of
state of the electron is

Apy, = —ﬁ% G[(Vi|C(k + G)|* - AK] ,

The total momentum change is therefore
Apg + Apy, = J = fAk

Since dJ/dt = F, we thus have

hdk /dt = F




vectors of all electrons:

' E

Band Electron in E Field

Now we see that the external electric field causes a change in the k

SR

SHE

dk B —eFE
dt dt h

If the electrons are in a partially filled band, this
will break the symmetry of electron states in the
15t BZ and produce a net current. But if they are
in a filled band, even though all electrons change
k vectors, the symmetry remains, soJ = 0.

When an electron reaches the 15t BZ edge (at k =
n/a) it immediately reappears at the opposite
edge (k = -m/a) and continues to increase its k .

As an electron’s k value increases, its velocity
increases, then decreases to zero and then
becomes negative when it reemerges at k = -1t/a.

Thus, an AC current is predicted to result from a
DC field (Bloch oscillations).



Band Effective Mass of an Electron

We can write the equation of motion of a Bloch electron in 1-D:

. - dv, dv_dk, nd dv. dv, d (1dE) 1d°E
= = N = = —_—— | = —
dt dk_ dt dk, dk, dk \nhdk, ) hdk
Also, from the acceleration theorem: dk, _F.
dt h
;ihviZS' a4 :ldzE(ij or F = n” a
' Y hdkl\ h o grE Y
dki
With the analogy of F = ma, the band
effective mass is defined as: . K> iy " T °F
d°E =22 2
m* h° dk;
dk’

The effective mass depends on the electron’s energy and thus its location
in the band.



Physical Meaning of Effective Mass

. 2
For a free electron: 722 m* = hm__ m

E = x and K’

2m -

m

It is easy to generalize this to a 3-D solid to take account of an anisotropic
electron energy surface. We would find that m* is a second-order tensor

with 9 components:
1) 1 e do (1),
m* ), h*dk,dk, - dt m) "

where u, v are Cartesian coordinates.

The effective mass concept is useful because it allows us to retain the
notion of a free-electron even when we have a periodic potential, as long
as we use m* to account for the effect of the lattice on the acceleration
of the electron.



Physical Meaning of Effective Mass

Small mass

Large mass

0

The effective mass is inversely proportional
to the curvature of the energy band.

Near the bottom of a nearly-free electron band
m* is approximately constant, but it increases
dramatically near the inflection point and even
becomes negative near the zone edge.

dE/dk

(d®E[dk*)!
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Ist zone

2nd zone

Construction of Fermi Surfaces for Free Electrons

Brillouin zones of a square lattice in two
dimensions. The circle shown is a surface of
constant energy for free electrons; it will be
the Fermi surface for some particular value
of the electron concentra- tion. The total
area of the filled region in k space de-
pends only on the electron concentration
and is inde- pendent of the interaction of
the electrons with the lattice. The shape of
the Fermi surface depends on the lattice
interaction, and the shape will not be an
exact circle in an actual lattice.

Fermi circle viewed
in the reduced zone
scheme

3rd zone



Nearly Free Electrons Fermi Surfaces

From free electrons Fermi surfaces to nearly free electrons Fermi surfaces:

e The interaction of the electron with the periodic potential of the crystal
creates energy gaps at the zone boundaries.

e Almost always the Fermi surface will intersect zone boundaries
perpendicularly.

e The crystal potential will round out sharp corners in the Fermi surfaces.

e The total volume enclosed by the Fermi surface depends only on the
electron concentration and is independent of the details of the lattice
interaction. | | |

- m’\ ST
ond zone 3rd zone

Free electron Fermi circle in the third
zone drawn in the periodic zone scheme




Three Types of Orbits in Magnetic Field

Lorentz force on the electron:

dk e
dt dt hic
Hole orbit Electron orbit Open orbits
\ /
B
dk
dt
/ dk B%)ut Vi€
dt of paper
A
BY \
(a) (b) (c)

Motion in a magnetic field of the wavevector of an electron on the Fermi surface

Orbits that enclose filled states are electron orbits. Orbits that en-
close empty states are hole orbits. Orbits that move from zone to
zone without closing are open orbits.



Quantization of Orbits in Magnetic Field
The momentum p of a particle (with charge q) in a magnetic field B is the
sum of two parts: P = Pun + Prieia = ik + gA/c and B=VxA
The orbits in a magnetic field are quantized by the Bohr-Sommerfeld
relation fﬁp cdr = (n+ y)2mh

when n is an integer and y is a phase correction that for free electrons has
the value 1/2. The equation of motion of a particle of charge g in a

magnetic field is Ik G dr

q
ax = 180 % =1
ﬁt c B = hk CrXB

3Ep-dr=3€ﬁk-dr+%39A-dr

:%SngBwlr +%qurlA-d0‘

Thus,

Z—gB°3gr><dr+%fB'dO'
q

2
:——qcb + %(D = ——®d=(n+y)2wh

C C



It follows that the orbit of an electron is quantized in such a way that the
flux through it is

b = (n + y)2mhcre)

The flux unit 2mhac/e = 4.14 x 1077 gauss cm? or T m?.

q

ik=—-r X B,a line element Ar in the plane normal to B is related

to Ak by Ar = (hc/eB)Ak, so that the area S, in k space is related to the
area A, of the orbit in r space by

A, = (hc/eB)*S, .
Thus,




De Haas-van Alphen Effect

The de Haas-van Alphen effect is the oscillation of the magnetic moment of
a metal as a function of the static magnetic field intensity. The effect can be
observed in pure specimens at low temperatures in strong magnetic fields.

Assume the magnetic field is applied along the z axis, the area of an orbit in
k., k, plane is quantized and the area between successive orbits is

AS=S, —S,_, = 2meB/hc

€r

These regions are
only schematic

Lo eh

¢ mEc 1

(b)

%ﬁ

B=0

€r

B;

\_

Explanation of the de
Haas-van Alphen effect
for a free electron gas in
two dimensions in a
magnetic field with

B, < B, < B;.



Degeneracy of Orbits in Magnetic Field

(a) (b)
allowed electron orbitals in two dimensions

The area between successive circles is
7A(k?) = 2mwk(Ak) = (2mm/h*) Ae = 2mmw /i — 2meB/hc

The number of free electron orbits collapsed into a Landau level is
D = (2meB/fic)(L2w)* = pB , and p =eL*2whc



Orbital Degeneracy Increases with B

. ’<—S:1—>'<—S:2—>’<—3=8—>‘

gt
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60 80 0 1 2 3 4
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Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu-
pied in a magnetic field B, for a two-dimensional system with N = 50 and p = 0.50. The shaded
area gives the number of particles in levels partially occupied. The value of s denotes the quantum
number of the highest level which is completely filled. Thus at B = 40 we have s = 2; the levels
n = 1andn = 2 are filled and there are 10 particles in the level n = 3. At B = 50 the level n = 3 is
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B.



dHvA Oscillation

The magnetic moment u of a system at absolute zero is given by u =
-0U/0B. The moment here is an oscillatory function of 1/B. This

oscillatory magnetic moment of the Fermi gas at low temperatures is the
de Haas-van Alphen effect.

The oscillations occur at equal
interval of 1/B so that

A 1) _ 2me
B heS
where S is the extremal area of

the Fermi surface normal to
the direction of B .




Extremal Orbits in Magnetic Field

For a Fermi surface of general shape the sections at different values of kB
will have different periods. Here kB is the component of k along the
direction of the magnetic field. The response will be the sum of
contributions from all sections or all orbits. But the dominant response of
the system comes from orbits whose periods are stationary with respect
to small changes in kB. Such orbits are called extremal orbits. Thus, in the
figure, the section AA’ dominates the observed cyclotron period.

A
The orbits in the section AA’ are ex-

tremal orbits: the cyclotron period
Magnetic is roughly constant over a
ficld reasonable section of the Fermi
surface. Other sections such as BB’
have orbits that vary in period

along the section.

>““\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\



Fermi Surface of Copper

Even if the free-electron Fermi sphere does not intersect a BZ boundary, its
shape can still be affected at points close to the boundary where the energy
bands begin to deviate from the free-electron parabolic shape. This is the
case with Cu.

o\ :
AR 7
m
Ez\é{

X w L r K X N(E)

/==

ALHHHI N
icomposite d band

9 conduction band

I N

DAL

Figure 7.25 The complete band structure diagram for Cu along the major symmetry directions
(compare with the Brillouin zone of Fig. 7.15b). The diagram to the right is a simple schematic
representation of the integrated density of levels and is convenient as a basis for the discussion of .
many physical properties of the later ‘d’ metals. We shall soon find that the sp valence electrons Fe Fmi su rfa ce Of CO p pe I
are responsible for the electrical conductivity of these metals; one therefore speaks of the

‘conduction band'. (After Segall 1962.)

Just a slightly perturbed free-electron sphere!



Fermi Surface of Gold

45.0 kG 455 kG 46.0 kG
Dog’s bone orbit of an De Haas-van Alphen effect in gold with
electron on the Fermi B // [110]. The oscillation is from the
surface of copper or gold dog’s bone orbit of the left figure.

in @ magnetic field.



(a)
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Photoemission Process

k(el) Ekm) X Z Z|<]7k\]7kz|x|l kH7 Z>

Ok kez) — hw)o(ky — ki)

hv

X 6(Ekin + Evac )

(b)

Ekin — _Evac + E(l) (kH?kZ> + hv

Here, i, j denote the initial

/ k(ext)

k”(ext)=W

LKy

and final bands, k,, k, are
the components of the
wave vector in the initial
and the final state, and E()
E, .. are the energies of the

initial state and the
vacuum level.




Photoemission Spectra of Cu(111) and Cu(110)

& t. / Photoemission spectra of Cu(111)

A 7 . and Cu(110) surfaces serving to
2 " establish the wave vector k;,, for
% (T10) uraee bulk electronic states: the two
% (111) surace prominent peaks appearing in the
g ! spectra along [111] on Cu(111)
5 . ,4:’ ! are found at an angle of 8 = 52.5°
£ // N - NP v in the [110] zone on Cu(110). The
g -7 1 I — magnitude of k;;; is determined
o

by considering k|| conservation.

(110) surface
0 =52.5°

k™ = k™ = K1Y sin 35° = k(Y sin 52.5°

-4 -3 -2 -1 0
Binding energy of electrons E — Eg (eV)



Angle-Resolved PhotoEmission Spectroscopy

analyzer

e detector

sample

32

aorb

(ARPES)

We need:
binding energy - E,
initial momentum - k'

Eb=E—hv+W

ki =kf =J 2mE/hz? sin® -
kil=kf,-6i»/w2(n§/h2 cos-6 \ ’

02 01 0 01 02 -02 01 0 01 02 —-02 01 0 01 02 -02 -01 0 01 02
ky (1/A) ky (1/A)k ky (1/A) ky (1/A)
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Concentric Hemispherical Analyzer (CHA)

AE/E, = s/ R,

s: mean slit width; Ry: mean radius



Bloch oscillations

The one-dimensional equation of motion for an electron with wave vector

k in a constant electric field E is:
dp dk el
7 pr e =) (t) = k(0)

Suppose the dispersion relation for a given banc £(k) = Acosak,

The group velocity v of the electron is given by
1 d€ Aa .
= —— = ——S8inak,
h dk h
and the electron position x can be computed as a function of time:

v(k)

z(t) = /0lt v(k(t"))dt' = z(0) + e% cos(%t) .

This shows that the electron oscillates in real space. The angular
frequency of the oscillations is given by

wp = ae|E|/h.
Bloch oscillations are not routinely observed because the electrons in a

periodic system undergo collisions with ions in the lattice much too
frequently, on the time scale of t (=104 s).



Problems

Impurity orbits. Indium antimonide has £, = 0.23 eV, dielectric constant €
= 18; electron effective mass m, = 0.015 m. Calculate (a) the donor
ionization energy; (b) the radius of the ground state orbit. (c) At what
minimum donor concentration will appreciable overlap effects between
the orbits of adjacent impurity atoms occur? This overlap tends to
produce an impurity band—a band of energy levels which permit
conductivity presumably by a hopping mechanism in which electrons
move from one impurity site to a neighboring ionized impurity site.

Hall effect with two carrier types. Assuming concentration n, p; relaxation
times 7., T,; and masses m,, m,, show that the Hall coefficient in the drift
velocity approximation is o p — nb?
e (ptab)p
where b = u./u, is the mobility ratio. In the derivation neglect terms of
order B%. In SI we drop the c. Hint: In the presence of a longitudinal
electric field, find the transverse electric field such that the transverse
current vanishes. The algebra may seem tedious, but the result is worth

the trouble. Neglect (w_t)? in comparison with w_t.



3. A semiconductor with a band gap energy E, of 1eV and equal hole and
electron effective masses m_* = m,* = my (m, is free electron mass) is p-
doped with an acceptor concentration of p = 1018 cm™3. The acceptor
energy level is located 0.2 eV above the valence band edge of the
material.

a) Show that intrinsic conduction in this material is negligible at 300 K.

b) Calculate the conductivity o of the material at room temperature (300
K), given a hole mobility of u, = 100 cm?/Vs at 300 K.

c) Plot the logarithm of the hole concentration, In p, versus reciprocal
temperature 1/T for the temperature range 100 to 1000 K.



